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Abstract __ 

A methodology for accelerated curing of commercially available room-temperature curing 
paste adhesives is outlined. Cure kinetics of the adhesive were studied by thermochemical 
analysis, and degree of cure was related to processing parameters and cure cycles. Increasing the 
cure temperature to 100°C reduced the cure time from 16 hr to approximately 15 min for 98% 
cure. Induction-heating techniques were used to demonstrate rapid heating of adhesives at the 
bondline for lap shear specimens. 
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1. Introduction 

The motivation for this work arises from the expanding use and complexity of design of 

composites in military vehicles and, with that, the increasing need for field expedient and 

depot-level repair procedures for these components. 

A critical issue in adhesive-based repair of composites is the application of sufficient heat 

and pressure at the bondline. It is highly desirable that thermal generation be localized at the 

bondline and be evenly distributed (taking into account thermal conductive losses). One method 

of rapidly applying localized heating at the bondline is induction heating [1]. 

Electromagnetic induction heating techniques are well known and widely used for metals and 

alloys. Recently, significant research has been undertaken to adapt induction heating to 

composites for benefits such as cost and reduced processing times. One of the heating 

techniques uses hysteresis losses in ferromagnetic particles subjected to high-frequency magnetic 

fields as the heat-generation mechanism. Another generates heat through joule losses caused by 

the formation of eddy currents through Faraday's Law. Both of these heating techniques can be 

applied to the repair of composites through the use of a susceptor material placed at the bondline 

or through the susceptorless heating of carbon-fiber-based systems [2, 3]. Susceptor layers are 

used to promote localized uniform heating to produce desired process temperatures in the 

bondline. When susceptors are used, the remotely located induction coil transfers 

electromagnetic energy to the susceptor, which in turn, generates thermal energy in the plane of 

the bondline. These techniques allow rapid heating of the susceptor material and, through 

thermal conduction, rapid heating of the adjacent adhesive. These methods have traditionally 

been plagued by nonuniformity of heating in the plane of the bondline. Several techniques have 

recently been developed [3, 4] that enable uniform heating of the susceptor in the plane of the 

bondline. 

Appropriate process windows are needed for each adhesive system to be used. In this study, 

eddy-current-based  susceptors   are  formed  from  electrically  conductive  meshes   and  an 
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epoxy-based adhesive. Room-temperature curing adhesives that are often used in the repair of 

composites require from days to weeks to achieve full cure. This work establishes a 

methodology for relating cure cycles to degree of cure predictions for accelerated curing of 

adhesives for repair. Furthermore, the induction heating is used to accelerate the cure of a 

room-temperature curing epoxy adhesive placed at composite-to-composite bondline. 

2. Thermochemical Analysis 

In order to maximize the benefits of accelerated cure of adhesives using induction heating, a 

process window must be established for the adhesives of interest. The process window would 

then be used to optimize the bonding process in terms of time and temperature. Issues that 

dictate the process window include cure kinetics, evolution of exotherms, flow and wetting, and 

thermally induced residual stresses. Adhesive cure is the most dominant of these issues and must 

be addressed to determine cure time as a function of temperature, as well as ultimate degree of 

cure. In this study, we have chosen a typical room-temperature curing epoxy for evaluation of 

accelerated cure properties. 

Differential scanning calorimetry (DSC) has been widely used to characterize the cure 

kinetics of thermosetting polymers including polyesters [5], epoxies [6], vinyl esters, and 

bismaleimides. Since the heat evolution dQ/dt measured by the DSC results from the chemical 

cross-linking reaction, it is possible to relate the heat evolution (dQ/dt) to the rate of reaction 

(da/dt) and the conversion (a). This can be accomplished by using the following relationships: 

da       1    fdQ^ 
dt    AHtot dt 

da-    '    tfdQV (2) ■1% dt     AHtot fo{ dt „ 



where AHtot is the total heat of reaction, generally determined by averaging the reaction 

exotherms measured from several dynamic-temperature DSC runs. Various chemical kinetic 

models can then be fit using data that are obtained from isothermal DSC experiments. 

The mechanistic models of thermoset cure that usually provide a more accurate 

representation of cross-linking reactions are not generally applicable to complex systems such as 

formulated adhesives. Since the goal of this work is to provide a process window for accelerated 

cure, the specific cure mechanisms need not be critically assessed. Alternatively, there are 

several empirical models that have been successfully used to predict to cure of thermosetting 

polymers. One popular model was proposed by Kamal and Sourour [7]. Their model 

(equation [3]) has found widespread acceptance for a number of cross-linking reactions 

(including epoxies) and will be used to fit the adhesive studied here. 

^ = (k1+k2a
mXau-ar (3) 

In this expression, a is the degree of conversion, au is the temperature-dependent maximum 

conversion, ki and k2 are Arrhenius-type rate constants, and m and n are constants usually 

assumed to sum to 2 but often allowed to vary freely. The ctn term arises from the fact that the 

entire heat of reaction is not released during isothermal cure due to the decreased mobility of the 

polymer chains as cross-linking occurs. By performing a series of isothermal cures, values for 

the model parameters can be determined and used to predict the cure kinetics of the adhesive. 

The material studied here was a two-part epoxy room-temperature-curing paste adhesive 

from Ciba. It was selected because of our prior experience with the system for composite and 

metal bonding. Additionally, the manufacturers suggest a 16-hr cure time at room temperature, 

making it an ideal candidate for accelerated cure studies. 

Several (10) dynamic DSC runs were performed to evaluate AHtot and the glass transition 

temperature (Tg) of the cured material. Resin and hardener were mixed one to one by weight and 



immediately inserted into the DSC (TA Instruments 2908), where they were heated at 10°C/min 

to 200°C. The resulting cure exotherm was integrated to evaluate the heat of reaction. A second 

heat of each sample was performed in order to measure the Tg of the cured material. The 

average and standard deviation of AHtot was 190.5 ± 10.2 J/g and Tg was 102 ± 14°C. This value 

of AHtot is used in equations (1) and (2) to relate the isothermal heat data to a and da/dt. 

Next, isothermal scans were performed at temperatures ranging from 40°C to 150°C. 

Samples were mixed and placed in the preheated DSC cell. Data were collected until the heat 

flow returned to the baseline value. The isothermal heat flow was related to a and da/dt using 

equations (1) and (2). A typical DSC isotherm and the resulting conversion vs. time are shown 

in Figure 1. Figure 2 shows the general trend of increased conversion and rate of reaction with 

increasing cure temperature. 

25.0 

T T 
4.0 6.0 8.0 

Time (rain) 

Figure 1. DSC Heat Flow for Isothermal Cure at 110°C and the Associated Degree of 
Conversion With Time. 
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Figure 2. Degree of Conversion Versus Time for Increasing Isothermal Cure 
Temperature. 

Equation (3) was then used to fit the da/dt versus a curves for each isotherm. A value of ccu 

was determined from the asymptotic conversion from each test, and m and n were permitted to 

vary freely. Figure 3 shows typical data and the associated fit. Analysis of each experiment 

produces values for all of the kinetic parameters at that specific temperature. The temperature 

dependence of ccu was found to be linear and is shown in Table 1. The Arrhenius parameters for 

k2 were evaluated as shown in Figure 4 (analysis of the data indicated that ki« 0 regardless of 

temperature and was subsequently neglected). A summary of all of the parameters is listed in 

Table 1. 

The use of the model will enable prediction of the entire curing process over a wide range of 

processing temperatures. Initially, however, the prediction of cure time at a specific temperature 

is of greatest interest to applying induction techniques to accelerate adhesive cure. Here, cure 

time is defined as the amount of time necessary to reach 98% of a„ for each temperature. 



Table 1. Kinetic Model Parameters 

Parameter Value 

m 0.28 ± 0.03 
n 1.67 ±0.32 

k2(T) 9.8 x 106exp(-6306/T [K]) 
(1/min) 

Ou(T) 0.62+1.3 xl0~3T(°C) 
(40<T<150°C) 

-0.2 0 0.2 0.4 0.6 
a 

0.8 

Figure 3. Plot of da/dt Versus a for a Typical Isotherm With Associated Fit. 

Figure 5 shows model predictions for cure time compared to the experimentally observed cure 

times. While the agreement is not perfect, it does permit an estimate of minimum cure time at 

each temperature. These values will be used to determine process windows for the induction 

assisted accelerated cure of this adhesive. 
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Figure 4. Arrhenius Relationship for the Parameter k2 Used in the Kinetic Model. 
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Figure 5.  Model Predictions for Cure Time Compared to Experimentally Observed Cure 
Times. 



3. Induction Heating 

Appropriate cure times for this adhesive can now be selected for any process temperature. 

This approach was used to select cure cycles for induction heating of the composite adhesive 

joints. Cure cycles chosen ranged from heating to 90-190°C under vacuum consolidation. 

Single lap shear specimens were fabricated by induction heating using a stainless steel mesh as 

the susceptor. An "earmuff' type induction coil was used and it carried currents between 25-40 

Amps at a frequency of 284 kHz. Typical temperature profiles during induction heating of lap 

shear specimens are shown in Figures 6 and 7. 
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Figure 6.  Typical Temperature Profiles for Induction Heated Adhesive Joints. 
T„,ax = 150°C (Dotted Line) and 205°C (Solid Line). 

For baseline comparisons, lap shear specimens were fabricated under oven cure conditions 

with vacuum consolidation. Lap shear tests showed comparable bond strengths between 

induction-fabricated specimens and oven-cured specimens. 
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Figure 7. Typical Measured Temperature Profile at Bondline at Steady 
State by Infrared Thermometry. 

4. Conclusions 

This report has described a methodology that can be used to accelerate the cure of 

room-temperature curing adhesives for rapid repair. Cross-linking reaction kinetics were 

developed and employed to determine cure cycles for a commercially available epoxy paste 

adhesive. This paste adhesive was combined with a metal screen to form a susceptor layer for 

bonding composite adherends. Induction techniques were used to rapidly heat the interface and 

cure the adhesive. Adhesive taken from the bondline demonstrated full cure at times determined 

from the kinetic models. 
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